method: ViT_B_16_Weights2024-05-31
Authors: Witold Pietroń, Aleksander Samek
Affiliation: Warsaw University of Technology
Description: We used pretrained model ViT_B_16_Weights pretrained model and trained it on provided dataset.
method: First example2024-03-30
Authors: Lorenzo Baraldi
Description: First example
First example
method: ViT_L_16_Weights SWAG2024-06-04
Authors: Witold Pietroń, Aleksander Samek
Affiliation: Warsaw University of Technology
Description: We used pretrained model ViT_L_16_Weights pretrained model and trained it on provided dataset. Starting from ViT_L_16_Weights.IMAGENET1K_SWAG_LINEAR_V1 weights.
Description Paper Source Code
Date | Method | precision | recall | f1 | accuracy_gan | accuracy_diffusion | GEN_0 | GEN_1 | GEN_2 | GEN_3 | GEN_4 | GEN_5 | GEN_6 | GEN_7 | GEN_8 | GEN_9 | GEN_10 | GEN_11 | GEN_12 | GEN_13 | GEN_14 | GEN_15 | GEN_16 | GEN_17 | GEN_18 | GEN_19 | GEN_20 | GEN_21 | GEN_22 | GEN_23 | GEN_24 | GEN_25 | GEN_26 | GEN_27 | GEN_28 | GEN_29 | GEN_30 | GEN_31 | GEN_32 | GEN_33 | GEN_34 | GEN_35 | GEN_36 | GEN_37 | GEN_38 | GEN_39 | GEN_40 | GEN_41 | GEN_42 | GEN_43 | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2024-05-31 | ViT_B_16_Weights | 0.9894 | 0.5263 | 0.6871 | 0.4963 | 0.7684 | 0.8409 | 0.5594 | 0.5278 | 0.1341 | 0.5742 | 0.8686 | 0.5442 | 0.0163 | 0.5755 | 0.5617 | 0.8473 | 0.4254 | 0.6950 | 0.1295 | 0.0504 | 0.2063 | 0.8923 | 0.0590 | 0.7042 | 0.8437 | 0.5703 | 0.4381 | 0.8910 | 0.5561 | 0.4454 | 0.4414 | 0.5421 | 0.8582 | 0.5888 | 0.5876 | 0.1390 | 0.8800 | 0.8842 | 0.0575 | 0.7112 | 0.5846 | 0.1280 | 0.5426 | 0.8796 | 0.2053 | 0.7242 | 0.0152 | 0.5534 | 0.0697 | |||
2024-03-30 | First example | 0.9508 | 0.5018 | 0.6569 | 0.5009 | 0.5009 | 0.5023 | 0.5083 | 0.4942 | 0.5088 | 0.4898 | 0.5127 | 0.5025 | 0.4847 | 0.5071 | 0.4923 | 0.4950 | 0.5127 | 0.5025 | 0.5013 | 0.5070 | 0.5005 | 0.5021 | 0.4974 | 0.5013 | 0.4935 | 0.4942 | 0.5035 | 0.4990 | 0.5042 | 0.4771 | 0.4931 | 0.5090 | 0.4942 | 0.5144 | 0.5077 | 0.5099 | 0.5000 | 0.5017 | 0.4944 | 0.5083 | 0.5008 | 0.5175 | 0.4958 | 0.5075 | 0.4995 | 0.4983 | 0.4962 | 0.5129 | 0.4981 | |||
2024-06-04 | ViT_L_16_Weights SWAG | 0.9834 | 0.4945 | 0.6581 | 0.5215 | 0.7066 | 0.8255 | 0.7470 | 0.4321 | 0.2500 | 0.3809 | 0.8258 | 0.3660 | 0.1415 | 0.3965 | 0.3637 | 0.8627 | 0.2496 | 0.6367 | 0.2181 | 0.1811 | 0.2576 | 0.8376 | 0.1710 | 0.5470 | 0.7815 | 0.5700 | 0.5604 | 0.8415 | 0.3619 | 0.5750 | 0.2411 | 0.3644 | 0.7847 | 0.3934 | 0.4109 | 0.2618 | 0.8868 | 0.8434 | 0.1898 | 0.5574 | 0.5611 | 0.2260 | 0.4158 | 0.8614 | 0.2526 | 0.6610 | 0.1206 | 0.7461 | 0.1720 | |||
2024-06-17 | Code Knn | 0.9921 | 0.6981 | 0.8195 | 0.5330 | 0.8696 | 0.9933 | 0.9746 | 0.7850 | 0.0766 | 0.8746 | 0.9923 | 0.7575 | 0.0640 | 0.9108 | 0.8140 | 0.9721 | 0.7506 | 0.9015 | 0.1863 | 0.0952 | 0.0800 | 0.9533 | 0.0977 | 0.9506 | 0.9952 | 0.9117 | 0.5788 | 0.8325 | 0.7752 | 0.5775 | 0.6558 | 0.6994 | 0.9456 | 0.8069 | 0.8215 | 0.2295 | 0.9156 | 0.9385 | 0.2214 | 0.8571 | 0.8225 | 0.2893 | 0.7298 | 0.9438 | 0.3005 | 0.8500 | 0.1646 | 0.8842 | 0.2710 | |||
2024-05-31 | Convolutional neural network | 0.9767 | 0.4859 | 0.6490 | 0.5440 | 0.6555 | 0.7713 | 0.7541 | 0.3333 | 0.3270 | 0.2758 | 0.7797 | 0.2781 | 0.2671 | 0.2747 | 0.1885 | 0.8906 | 0.3120 | 0.5125 | 0.3421 | 0.2925 | 0.3602 | 0.7780 | 0.2890 | 0.6319 | 0.7427 | 0.5465 | 0.6762 | 0.7766 | 0.1800 | 0.6847 | 0.3150 | 0.2608 | 0.7544 | 0.2891 | 0.2778 | 0.3386 | 0.9064 | 0.7880 | 0.2986 | 0.6536 | 0.5473 | 0.3244 | 0.3126 | 0.7960 | 0.3618 | 0.5275 | 0.2696 | 0.7529 | 0.2576 | |||
2024-06-01 | Swin DCT with Multicrop | 0.9962 | 0.6698 | 0.8011 | 0.5590 | 0.8804 | 0.9998 | 0.9602 | 0.9415 | 0.0689 | 0.9742 | 0.9998 | 0.9369 | 0.0160 | 0.9527 | 0.9690 | 0.8031 | 0.7823 | 0.9406 | 0.4003 | 0.3258 | 0.2800 | 0.9427 | 0.1824 | 0.9608 | 0.9998 | 0.9429 | 0.6777 | 0.9588 | 0.7852 | 0.4650 | 0.5079 | 0.7235 | 0.8133 | 0.8081 | 0.7744 | 0.0421 | 0.6048 | 0.8119 | 0.1786 | 0.7452 | 0.6496 | 0.2193 | 0.6746 | 0.8052 | 0.1525 | 0.6817 | 0.0295 | 0.6119 | 0.1120 | |||
2024-06-17 | Code SVM | 0.9864 | 0.8103 | 0.8897 | 0.5805 | 0.8577 | 0.9098 | 0.9719 | 0.9221 | 0.2354 | 0.9746 | 0.9475 | 0.9217 | 0.2501 | 0.9619 | 0.9442 | 0.9296 | 0.9485 | 0.9692 | 0.3250 | 0.1694 | 0.1725 | 0.9185 | 0.1552 | 0.9856 | 0.9506 | 0.9696 | 0.8215 | 0.6521 | 0.9190 | 0.8215 | 0.8760 | 0.8806 | 0.9494 | 0.9448 | 0.9240 | 0.5704 | 0.9290 | 0.9446 | 0.5104 | 0.9567 | 0.9275 | 0.5963 | 0.8833 | 0.9198 | 0.5760 | 0.9444 | 0.4552 | 0.9533 | 0.4913 | |||
2024-05-22 | Swin Base Huge data aug | 0.9956 | 0.6665 | 0.7985 | 0.6354 | 0.8506 | 0.9971 | 0.4529 | 0.7842 | 0.2801 | 0.8719 | 0.9952 | 0.7094 | 0.0990 | 0.8015 | 0.9150 | 0.8750 | 0.7367 | 0.9750 | 0.6325 | 0.4898 | 0.5095 | 0.9492 | 0.3210 | 0.8288 | 0.9956 | 0.5238 | 0.6454 | 0.9373 | 0.7623 | 0.5529 | 0.6046 | 0.6619 | 0.8652 | 0.7802 | 0.7179 | 0.1886 | 0.7660 | 0.8785 | 0.3318 | 0.7460 | 0.4798 | 0.4080 | 0.6771 | 0.8940 | 0.3065 | 0.7735 | 0.1106 | 0.4742 | 0.2536 | |||
2024-05-29 | Swin Base Huge Data Aug + DCT + Random Fake (One Epoch) | 0.9956 | 0.6707 | 0.8015 | 0.6365 | 0.8532 | 0.9940 | 0.5279 | 0.7842 | 0.3240 | 0.9090 | 0.9892 | 0.7246 | 0.1286 | 0.8417 | 0.9185 | 0.8146 | 0.7435 | 0.9788 | 0.5975 | 0.4710 | 0.5405 | 0.9444 | 0.3073 | 0.8710 | 0.9938 | 0.4931 | 0.6615 | 0.9425 | 0.7702 | 0.5438 | 0.6025 | 0.6673 | 0.8656 | 0.7994 | 0.7467 | 0.2078 | 0.7135 | 0.8746 | 0.3112 | 0.7633 | 0.4423 | 0.3820 | 0.6738 | 0.8802 | 0.3165 | 0.7956 | 0.1341 | 0.5027 | 0.2339 | |||
2024-05-30 | Swin Base Huge Data Aug + DCT + Random Fake (Two Epochs - TH adjusted) | 0.9945 | 0.7158 | 0.8324 | 0.6387 | 0.8700 | 0.9990 | 0.4958 | 0.8604 | 0.3258 | 0.9356 | 0.9975 | 0.7977 | 0.2101 | 0.8738 | 0.9558 | 0.9160 | 0.7967 | 0.9823 | 0.5628 | 0.4262 | 0.5055 | 0.9340 | 0.3399 | 0.8769 | 0.9988 | 0.6756 | 0.7013 | 0.9129 | 0.8331 | 0.6358 | 0.6873 | 0.7488 | 0.9152 | 0.8492 | 0.7913 | 0.2354 | 0.8229 | 0.9196 | 0.3460 | 0.8025 | 0.6100 | 0.4148 | 0.7617 | 0.9240 | 0.3570 | 0.8206 | 0.2171 | 0.5110 | 0.3081 | |||
2024-05-29 | Swin Base Huge Data Aug + DCT + Random Fake (One Epoch - TH adjusted) | 0.9905 | 0.8077 | 0.8898 | 0.7032 | 0.8649 | 0.9992 | 0.7269 | 0.9069 | 0.5043 | 0.9673 | 0.9985 | 0.8744 | 0.4427 | 0.9308 | 0.9654 | 0.9248 | 0.9140 | 0.9948 | 0.8020 | 0.7072 | 0.7825 | 0.8602 | 0.5965 | 0.9627 | 0.9990 | 0.7800 | 0.7856 | 0.8408 | 0.8775 | 0.7223 | 0.7952 | 0.8304 | 0.9319 | 0.8983 | 0.8646 | 0.3600 | 0.8602 | 0.9346 | 0.5100 | 0.8913 | 0.6921 | 0.5940 | 0.8265 | 0.9444 | 0.5320 | 0.8873 | 0.3727 | 0.6906 | 0.4678 | |||
2024-05-24 | PatchNet2 | 0.9924 | 0.6128 | 0.7578 | 0.7229 | 0.7744 | 0.9715 | 0.8777 | 0.7096 | 0.7274 | 0.8523 | 0.9817 | 0.7506 | 1.0000 | 0.8073 | 0.5592 | 0.8979 | 0.2915 | 0.5404 | 0.9378 | 0.9836 | 0.9540 | 0.9106 | 0.8917 | 0.7354 | 0.9560 | 0.7688 | 0.2485 | 0.9096 | 0.4575 | 0.2927 | 0.2842 | 0.5760 | 0.7131 | 0.6288 | 0.5894 | 0.1372 | 0.6131 | 0.7373 | 0.1308 | 0.5629 | 0.5148 | 0.1610 | 0.5131 | 0.7127 | 0.1420 | 0.4031 | 0.2526 | 0.6146 | 0.1113 | |||
2024-06-07 | CLIP-adapter | 0.9932 | 0.8522 | 0.9173 | 0.7612 | 0.8987 | 1.0000 | 0.8971 | 0.9294 | 0.3742 | 0.9725 | 1.0000 | 0.9938 | 0.1696 | 0.9915 | 0.9998 | 0.9300 | 0.8246 | 1.0000 | 0.9390 | 0.8372 | 0.7105 | 0.8898 | 0.5079 | 0.9913 | 1.0000 | 0.9542 | 0.8108 | 0.8848 | 0.9283 | 0.7475 | 0.7010 | 0.8998 | 0.9400 | 0.9050 | 0.9144 | 0.5151 | 0.8504 | 0.9475 | 0.7368 | 0.8992 | 0.8108 | 0.8425 | 0.8254 | 0.9531 | 0.7225 | 0.9113 | 0.5903 | 0.7752 | 0.6745 | |||
2024-05-30 | UniFID - K_means | 0.9907 | 0.8263 | 0.9010 | 0.8510 | 0.8395 | 0.8304 | 0.7788 | 0.6969 | 0.5859 | 0.7727 | 0.8317 | 0.6804 | 0.7809 | 0.8096 | 0.6440 | 0.7646 | 0.7252 | 0.8288 | 0.7983 | 0.8108 | 0.8080 | 0.7117 | 0.8017 | 0.7727 | 0.8254 | 0.7215 | 0.5125 | 0.9888 | 0.7021 | 0.6465 | 0.9496 | 0.8390 | 1.0000 | 0.9594 | 0.9785 | 0.6595 | 0.8956 | 0.9998 | 0.9996 | 0.9815 | 0.8675 | 0.9920 | 0.8500 | 1.0000 | 0.9920 | 0.9996 | 0.9995 | 1.0000 | 0.9924 | |||
2024-05-31 | UniFID - V_exp3 | 0.9969 | 0.8210 | 0.9004 | 0.8649 | 0.8971 | 0.8323 | 0.7735 | 0.7652 | 0.4532 | 0.8108 | 0.8263 | 0.7894 | 0.6433 | 0.8285 | 0.7008 | 0.8238 | 0.7575 | 0.7225 | 0.6465 | 0.6508 | 0.6545 | 0.9142 | 0.6563 | 0.8040 | 0.8271 | 0.7338 | 0.6150 | 0.9888 | 0.7021 | 0.6465 | 0.9496 | 0.8390 | 1.0000 | 0.9594 | 0.9785 | 0.6595 | 0.8956 | 0.9998 | 0.9996 | 0.9815 | 0.8675 | 0.9920 | 0.8500 | 1.0000 | 0.9920 | 0.9996 | 0.9995 | 1.0000 | 0.9924 | |||
2024-06-01 | UniFID - exp5_Method2 | 0.9980 | 0.7958 | 0.8855 | 0.8773 | 0.8892 | 0.8067 | 0.7496 | 0.6504 | 0.4575 | 0.7385 | 0.8073 | 0.6369 | 0.6568 | 0.7763 | 0.5917 | 0.7277 | 0.6852 | 0.7425 | 0.6580 | 0.6716 | 0.6680 | 0.9508 | 0.6715 | 0.7358 | 0.7983 | 0.6817 | 0.4610 | 0.9888 | 0.7021 | 0.6465 | 0.9496 | 0.8390 | 1.0000 | 0.9594 | 0.9785 | 0.6595 | 0.8956 | 0.9998 | 0.9996 | 0.9815 | 0.8675 | 0.9920 | 0.8500 | 1.0000 | 0.9920 | 0.9996 | 0.9995 | 1.0000 | 0.9924 | |||
2024-05-28 | UniFID - tow_modles_threshold | 0.9979 | 0.8008 | 0.8886 | 0.8774 | 0.8910 | 0.8131 | 0.7590 | 0.6667 | 0.4617 | 0.7496 | 0.8135 | 0.6515 | 0.6648 | 0.7850 | 0.6113 | 0.7350 | 0.6983 | 0.7479 | 0.6630 | 0.6732 | 0.6735 | 0.9465 | 0.6752 | 0.7498 | 0.8052 | 0.6981 | 0.4815 | 0.9888 | 0.7021 | 0.6465 | 0.9496 | 0.8390 | 1.0000 | 0.9594 | 0.9785 | 0.6595 | 0.8956 | 0.9998 | 0.9996 | 0.9815 | 0.8675 | 0.9920 | 0.8500 | 1.0000 | 0.9920 | 0.9996 | 0.9995 | 1.0000 | 0.9924 | |||
2024-05-31 | UniFID - cont_thre84.6 | 0.9979 | 0.8008 | 0.8886 | 0.8774 | 0.8910 | 0.8131 | 0.7590 | 0.6667 | 0.4617 | 0.7496 | 0.8135 | 0.6515 | 0.6648 | 0.7850 | 0.6113 | 0.7350 | 0.6983 | 0.7479 | 0.6630 | 0.6732 | 0.6735 | 0.9465 | 0.6752 | 0.7498 | 0.8052 | 0.6981 | 0.4815 | 0.9888 | 0.7021 | 0.6465 | 0.9496 | 0.8390 | 1.0000 | 0.9594 | 0.9785 | 0.6595 | 0.8956 | 0.9998 | 0.9996 | 0.9815 | 0.8675 | 0.9920 | 0.8500 | 1.0000 | 0.9920 | 0.9996 | 0.9995 | 1.0000 | 0.9924 | |||
2024-05-31 | Deepfake Detection by ConvNext | 0.9960 | 0.8871 | 0.9384 | 0.8807 | 0.9134 | 1.0000 | 0.9992 | 0.9883 | 1.0000 | 0.9971 | 1.0000 | 0.9629 | 0.9955 | 0.9981 | 0.9940 | 0.9971 | 0.9990 | 0.8175 | 0.9998 | 1.0000 | 1.0000 | 0.9448 | 0.9281 | 0.9942 | 1.0000 | 0.9752 | 0.9973 | 0.9179 | 0.8675 | 0.8263 | 0.8529 | 0.7777 | 0.8508 | 0.8719 | 0.8750 | 0.7398 | 0.7863 | 0.8290 | 0.7714 | 0.8402 | 0.7756 | 0.7753 | 0.7952 | 0.8500 | 0.6665 | 0.5400 | 0.6778 | 0.8071 | 0.4058 |