method: ViT_B_16_Weights2024-05-31

Authors: Witold Pietroń, Aleksander Samek

Affiliation: Warsaw University of Technology

Description: We used pretrained model ViT_B_16_Weights pretrained model and trained it on provided dataset.

method: First example2024-03-30

Authors: Lorenzo Baraldi

Description: First example

First example

method: ViT_L_16_Weights SWAG2024-06-04

Authors: Witold Pietroń, Aleksander Samek

Affiliation: Warsaw University of Technology

Description: We used pretrained model ViT_L_16_Weights pretrained model and trained it on provided dataset. Starting from ViT_L_16_Weights.IMAGENET1K_SWAG_LINEAR_V1 weights.

Ranking Table

Description Paper Source Code
DateMethodprecisionrecallf1accuracy_ganaccuracy_diffusionGEN_0GEN_1GEN_2GEN_3GEN_4GEN_5GEN_6GEN_7GEN_8GEN_9GEN_10GEN_11GEN_12GEN_13GEN_14GEN_15GEN_16GEN_17GEN_18GEN_19GEN_20GEN_21GEN_22GEN_23GEN_24GEN_25GEN_26GEN_27GEN_28GEN_29GEN_30GEN_31GEN_32GEN_33GEN_34GEN_35GEN_36GEN_37GEN_38GEN_39GEN_40GEN_41GEN_42GEN_43
2024-05-31ViT_B_16_Weights0.98940.52630.68710.49630.76840.84090.55940.52780.13410.57420.86860.54420.01630.57550.56170.84730.42540.69500.12950.05040.20630.89230.05900.70420.84370.57030.43810.89100.55610.44540.44140.54210.85820.58880.58760.13900.88000.88420.05750.71120.58460.12800.54260.87960.20530.72420.01520.55340.0697
2024-03-30First example0.95080.50180.65690.50090.50090.50230.50830.49420.50880.48980.51270.50250.48470.50710.49230.49500.51270.50250.50130.50700.50050.50210.49740.50130.49350.49420.50350.49900.50420.47710.49310.50900.49420.51440.50770.50990.50000.50170.49440.50830.50080.51750.49580.50750.49950.49830.49620.51290.4981
2024-06-04ViT_L_16_Weights SWAG0.98340.49450.65810.52150.70660.82550.74700.43210.25000.38090.82580.36600.14150.39650.36370.86270.24960.63670.21810.18110.25760.83760.17100.54700.78150.57000.56040.84150.36190.57500.24110.36440.78470.39340.41090.26180.88680.84340.18980.55740.56110.22600.41580.86140.25260.66100.12060.74610.1720
2024-06-17Code Knn0.99210.69810.81950.53300.86960.99330.97460.78500.07660.87460.99230.75750.06400.91080.81400.97210.75060.90150.18630.09520.08000.95330.09770.95060.99520.91170.57880.83250.77520.57750.65580.69940.94560.80690.82150.22950.91560.93850.22140.85710.82250.28930.72980.94380.30050.85000.16460.88420.2710
2024-05-31Convolutional neural network0.97670.48590.64900.54400.65550.77130.75410.33330.32700.27580.77970.27810.26710.27470.18850.89060.31200.51250.34210.29250.36020.77800.28900.63190.74270.54650.67620.77660.18000.68470.31500.26080.75440.28910.27780.33860.90640.78800.29860.65360.54730.32440.31260.79600.36180.52750.26960.75290.2576
2024-06-01Swin DCT with Multicrop0.99620.66980.80110.55900.88040.99980.96020.94150.06890.97420.99980.93690.01600.95270.96900.80310.78230.94060.40030.32580.28000.94270.18240.96080.99980.94290.67770.95880.78520.46500.50790.72350.81330.80810.77440.04210.60480.81190.17860.74520.64960.21930.67460.80520.15250.68170.02950.61190.1120
2024-06-17Code SVM0.98640.81030.88970.58050.85770.90980.97190.92210.23540.97460.94750.92170.25010.96190.94420.92960.94850.96920.32500.16940.17250.91850.15520.98560.95060.96960.82150.65210.91900.82150.87600.88060.94940.94480.92400.57040.92900.94460.51040.95670.92750.59630.88330.91980.57600.94440.45520.95330.4913
2024-05-22Swin Base Huge data aug0.99560.66650.79850.63540.85060.99710.45290.78420.28010.87190.99520.70940.09900.80150.91500.87500.73670.97500.63250.48980.50950.94920.32100.82880.99560.52380.64540.93730.76230.55290.60460.66190.86520.78020.71790.18860.76600.87850.33180.74600.47980.40800.67710.89400.30650.77350.11060.47420.2536
2024-05-29Swin Base Huge Data Aug + DCT + Random Fake (One Epoch)0.99560.67070.80150.63650.85320.99400.52790.78420.32400.90900.98920.72460.12860.84170.91850.81460.74350.97880.59750.47100.54050.94440.30730.87100.99380.49310.66150.94250.77020.54380.60250.66730.86560.79940.74670.20780.71350.87460.31120.76330.44230.38200.67380.88020.31650.79560.13410.50270.2339
2024-05-30Swin Base Huge Data Aug + DCT + Random Fake (Two Epochs - TH adjusted)0.99450.71580.83240.63870.87000.99900.49580.86040.32580.93560.99750.79770.21010.87380.95580.91600.79670.98230.56280.42620.50550.93400.33990.87690.99880.67560.70130.91290.83310.63580.68730.74880.91520.84920.79130.23540.82290.91960.34600.80250.61000.41480.76170.92400.35700.82060.21710.51100.3081
2024-05-29Swin Base Huge Data Aug + DCT + Random Fake (One Epoch - TH adjusted)0.99050.80770.88980.70320.86490.99920.72690.90690.50430.96730.99850.87440.44270.93080.96540.92480.91400.99480.80200.70720.78250.86020.59650.96270.99900.78000.78560.84080.87750.72230.79520.83040.93190.89830.86460.36000.86020.93460.51000.89130.69210.59400.82650.94440.53200.88730.37270.69060.4678
2024-05-24PatchNet20.99240.61280.75780.72290.77440.97150.87770.70960.72740.85230.98170.75061.00000.80730.55920.89790.29150.54040.93780.98360.95400.91060.89170.73540.95600.76880.24850.90960.45750.29270.28420.57600.71310.62880.58940.13720.61310.73730.13080.56290.51480.16100.51310.71270.14200.40310.25260.61460.1113
2024-06-07CLIP-adapter0.99320.85220.91730.76120.89871.00000.89710.92940.37420.97251.00000.99380.16960.99150.99980.93000.82461.00000.93900.83720.71050.88980.50790.99131.00000.95420.81080.88480.92830.74750.70100.89980.94000.90500.91440.51510.85040.94750.73680.89920.81080.84250.82540.95310.72250.91130.59030.77520.6745
2024-05-30UniFID - K_means0.99070.82630.90100.85100.83950.83040.77880.69690.58590.77270.83170.68040.78090.80960.64400.76460.72520.82880.79830.81080.80800.71170.80170.77270.82540.72150.51250.98880.70210.64650.94960.83901.00000.95940.97850.65950.89560.99980.99960.98150.86750.99200.85001.00000.99200.99960.99951.00000.9924
2024-05-31UniFID - V_exp30.99690.82100.90040.86490.89710.83230.77350.76520.45320.81080.82630.78940.64330.82850.70080.82380.75750.72250.64650.65080.65450.91420.65630.80400.82710.73380.61500.98880.70210.64650.94960.83901.00000.95940.97850.65950.89560.99980.99960.98150.86750.99200.85001.00000.99200.99960.99951.00000.9924
2024-06-01UniFID - exp5_Method20.99800.79580.88550.87730.88920.80670.74960.65040.45750.73850.80730.63690.65680.77630.59170.72770.68520.74250.65800.67160.66800.95080.67150.73580.79830.68170.46100.98880.70210.64650.94960.83901.00000.95940.97850.65950.89560.99980.99960.98150.86750.99200.85001.00000.99200.99960.99951.00000.9924
2024-05-28UniFID - tow_modles_threshold0.99790.80080.88860.87740.89100.81310.75900.66670.46170.74960.81350.65150.66480.78500.61130.73500.69830.74790.66300.67320.67350.94650.67520.74980.80520.69810.48150.98880.70210.64650.94960.83901.00000.95940.97850.65950.89560.99980.99960.98150.86750.99200.85001.00000.99200.99960.99951.00000.9924
2024-05-31UniFID - cont_thre84.60.99790.80080.88860.87740.89100.81310.75900.66670.46170.74960.81350.65150.66480.78500.61130.73500.69830.74790.66300.67320.67350.94650.67520.74980.80520.69810.48150.98880.70210.64650.94960.83901.00000.95940.97850.65950.89560.99980.99960.98150.86750.99200.85001.00000.99200.99960.99951.00000.9924
2024-05-31Deepfake Detection by ConvNext0.99600.88710.93840.88070.91341.00000.99920.98831.00000.99711.00000.96290.99550.99810.99400.99710.99900.81750.99981.00001.00000.94480.92810.99421.00000.97520.99730.91790.86750.82630.85290.77770.85080.87190.87500.73980.78630.82900.77140.84020.77560.77530.79520.85000.66650.54000.67780.80710.4058

Ranking Graphic

Ranking Graphic